
Clockblocks: A Pure-Python Library for Controlling Musical Time

Marc Evanstein
University of California, Santa Barbara

marc@marcevanstein.com

ABSTRACT

This paper describes clockblocks, a GPL3.0-licensed
pure-Python library for controlling the flow of musical
time, which is part of a broader framework for music com-
position in Python called SCAMP. Clockblocks allows for
the coordination of parallel and / or nested clocks run-
ning at different tempi, facilitates smooth acceleration and
deceleration, and sleeps precisely while compensating for
calculation time. The approach presented here is com-
pared with other systems for managing musical time, and
further development in terms of coordinating metric phase
is considered.

1. INTRODUCTION

1.1 Context

In recent years there has been a proliferation of interest in,
and tools designed for, computer-assisted music composi-
tion. Among the options available, one might broadly dis-
tinguish between domain-specific languages, such as Su-
perCollider or Max/MSP, and frameworks that operate within
general-purpose programming languages, such as abjad [1]
or jMusic [2]. While both approaches have advantages,
one major advantage of situating a composition framework
within a general-purpose language is the wide range of
powerful libraries that are made readily available.

Another important distinction exists between languages
and frameworks aimed at the direct generation of sound,
and those aimed at the creation of a score to be played by
live performers. These very different aims necessitate sig-
nificant differences in design; for instance, speed and effi-
ciency are critical concerns when generating real-time au-
dio, while for score-generation they are much less impor-
tant. On the other hand, traditional music notation places
very significant (and idiosyncratic) constraints on timing
and rhythm, as well as on other musical parameters.

SCAMP (Suite for Computer-Assisted Music in
Python) [3] is a GPL3.0-licensed framework for musical
composition that aims to take advantage of the general-
purpose nature and compact, readable syntax of Python,
while at the same time situating itself as a hybrid between
sound-oriented and notation-oriented frameworks. Al-
though the creation of traditionally notated scores is a
central aspect of the framework, SCAMP is nevertheless
strongly playback-oriented: rather than interacting with a

Copyright: c©2018 Marc Evanstein et al. This is an open-access article
distributed under the terms of the Creative Commons Attribution License
3.0 Unported, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

score, the programmer interacts with a virtual ensemble,
listening to and tweaking the resulting playback until he
or she is ready to translate the music to traditional western
music notation.

The key functions of the SCAMP framework are:

• To provide facilities for flexible and extensible note
playback, e.g. via FluidSynth or over OSC. (Effort-
less microtonality and glissandi have been built in.)

• To manage the flow of multiple interconnected
streams of musical time.

• To record note-events, quantize recorded perfor-
mances sensibly and flexibly, and translate the result
to legible music notation, either as MusicXML or as
LilyPond (via the abjad library).

A key value underlying the development of SCAMP is
that of modularity and adherence as much as possible to
the Unix Philosophy. For instance, the MusicXML export
capability is available separately as pymusicxml, the flex-
ible musical Envelope class is available separately as ex-
penvelope, and the system for managing musical time is
available separately as clockblocks. It is this last library
that is the subject of this paper.

1.2 Goals

Clockblocks arose to address several recurring problems
with the scheduling of note playback events and the record-
ing of note event data in Python:

1. The built-in time.sleep function has limited ac-
curacy, especially for longer wait times.

2. Playback is slowed down by script execution, notice-
ably so if extensive calculations are involved.

3. In multi-part music running in parallel threads, dif-
fering calculation times result in drift between the
parts. This is especially problematic if note events
are to be recorded and quantized.

4. A system for controlling and modulating tempo is
needed, ideally one allowing for multiple indepen-
dent streams operating simultaneously.

Clockblocks solves the first of these problems by defining
a sleep_precisely function which repeatedly sleeps
for half the remaining duration until fewer than 500µs
are left, at which point it implements a busy wait for the
remaining time. The remaining problems are addressed
through a system of interconnected clocks that all inherit
from a single master clock. In this way, multiple indepen-
dent streams of musical time, potentially running simulta-
neously at different tempi, remain perfectly synchronized.

mailto:marc@marcevanstein.com
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

2. A SIMPLE EXAMPLE

2.1 The Code

The following example will serve to introduce the clock-
blocks API:

from clockblocks import Clock

clock = Clock(initial_tempo=60)

def log_timing():
print(

"Beat:", clock.beats(),
"Time:", round(clock.time(), 2),
"Tempo:", round(clock.tempo, 2)

)

while clock.beats() < 4:
log_timing()
clock.wait(1)

change to 120 bpm (2 beats per second)
clock.tempo = 120
while clock.beats() < 8:

log_timing()
clock.wait(1)

gradually slow to 30 bpm over 8 beats
clock.set_tempo_target(30, 8)
while clock.beats() < 20:

log_timing()
clock.wait(1)

The resulting output of this program is:

Beat: 0.0, Time: 0.0, Tempo: 60.0
Beat: 1.0, Time: 1.0, Tempo: 60.0
Beat: 2.0, Time: 2.0, Tempo: 60.0
Beat: 3.0, Time: 3.0, Tempo: 60.0
Beat: 4.0, Time: 4.0, Tempo: 120.0
Beat: 5.0, Time: 4.5, Tempo: 120.0
Beat: 6.0, Time: 5.0, Tempo: 120.0
Beat: 7.0, Time: 5.5, Tempo: 120.0
Beat: 8.0, Time: 6.0, Tempo: 120.0
Beat: 9.0, Time: 6.59, Tempo: 87.27
Beat: 10.0, Time: 7.37, Tempo: 68.57
Beat: 11.0, Time: 8.34, Tempo: 56.47
Beat: 12.0, Time: 9.5, Tempo: 48.0
Beat: 13.0, Time: 10.84, Tempo: 41.74
Beat: 14.0, Time: 12.37, Tempo: 36.92
Beat: 15.0, Time: 14.09, Tempo: 33.1
Beat: 16.0, Time: 16.0, Tempo: 30.0
Beat: 17.0, Time: 18.0, Tempo: 30.0
Beat: 18.0, Time: 20.0, Tempo: 30.0
Beat: 19.0, Time: 22.0, Tempo: 30.0

Note that the faster the tempo, the less time advances
for a given beat, and the slower the tempo, the more time
advances. The speed of a clock can be set using any of
three interrelated properties: its rate, its beat length, and
its tempo. These are defined as follows:

R = 1/Lb (1)

T = 60 ·R = 60/Lb (2)

Where Lb represents beat length and is measured in sec-
onds (at least on a top level clock), R represents rate and is
measured in in beats per second, and T represents tempo

and is measured in beats per minute. Setting any one of
these properties for a clock automatically sets the other
two. In some ways, rate and beat length are the most nat-
ural descriptors, especially when clocks are nested inside
of each other. However, tempo is retained as a property
because of its associated musical intuition.

2.2 Implementation

Each clock internally uses a TempoEnvelope object to
manage changes of tempo. TempoEnvelope is a sub-
class of the Envelope class from the SCAMP package
expenvelope, which defines a piecewise exponential curve
similar in function to the Env object in SuperCollider [4].
In practice, this means that any accelerandi or ritardandi
can be given a non-linear shape, increasing the expressive
potential of clockblocks.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Beat

0.0

0.5

1.0

1.5

2.0

2.5

Be
at

 L
en

gt
h

Example TempoEnvelope

Figure 1. Graph of the clock’s TempoEnvelope from the example above

Although the user is likely thinking in terms of rate or
tempo, internally the tempo envelope is based on beat
length for ease of calculations. Figure 1 shows this beat
length curve for the above example; when the tempo jumps
to 120 bpm on beat 4, the beat length cuts to 0.5, and then
from beat 8 to beat 16 it slowly increases to 2 during the
ritardando. The TempoEnvelope class keeps track in-
ternally of the current beat, and whenever the user calls
clock.wait(beats), the area under the curve is inte-
grated from the current beat forward to the destination beat
to determine the associated wait time in seconds.

3. PARALLELISM

3.1 Parallel Clocks Example

The above example featured a single stream of musical
time. However, the true strength of clockblocks lies in its
ability to coordinate multiple parallel streams of time, as
in the following example:

from clockblocks import Clock

master = Clock()

def child1(my_clock: Clock):
while my_clock.beats() < 6:

print("Child Clock 1 at beat {}".
format(my_clock.beats())

my_clock.wait(1)

def child2(my_clock: Clock):
while my_clock.beats() < 3:

print("Child Clock 2 at beat {}".
format(my_clock.beats())

my_clock.wait(1/3)

master.fork(child1)
master.fork(child2)
master.wait_for_children_to_finish()

In this example we create a master clock and define two
parallel processes, child1 and child2. The first func-
tion prints every beat until beat 6, while the second prints
every third of a beat until beat 3. We then fork these func-
tions on the master clock. The results are as follows:

Clock 1 at beat 0.0
Clock 2 at beat 0.0
Clock 2 at beat 0.333
Clock 2 at beat 0.667
Clock 1 at beat 1.0
Clock 2 at beat 1.0
Clock 2 at beat 1.333
Clock 2 at beat 1.667
Clock 2 at beat 2.0
Clock 1 at beat 2.0
Clock 2 at beat 2.333
Clock 2 at beat 2.667
Clock 1 at beat 3.0
Clock 1 at beat 4.0
Clock 1 at beat 5.0

Note that the child functions take a single argument
which gets passed a handle to the clock being forked. It
is also possible to call get_current_clock() to cap-
ture the clock running at any given moment.

3.2 Parallel Clocks Implementation

Whenever a child clock calls wait, it registers a wake up
time with its parent and then pauses execution until the
parent rouses it. The parent clock maintains a cue of wake
up calls from its children, and whenever it calls wait, it
looks to see if there is a child clock with a wake up time
in the near future so that it can rouse it at the appropriate
time. An example sequence of events with both parent and
child starting at t = 0 might be as follows:

t = 0:
- Child calls wait(0.5), registers
wake up time of 0.5 with parent.

- Parent calls wait(1), sees that
a child is set to be woken up at
t = 0.5, and so waits instead
for 0.5 beats.

t = 0.5:
- Parent wakes up and rouses child

- Child wakes and calls wait(1.0),
registering a wake up time of 1.5
with parent.

- Parent sees no other child wake
events during the rest of its wait
of 1, and so sleeps for the
remaining 0.5.

t = 1.0:
- Parent wakes from its sleep, calls
wait(2) this time, and sees that a
child has registered a wake up
time of 1.5. As a result, it waits
0.5 second.

t = 1.5:
- Parent wakes up and rouses child.
- Child wakes up and chooses to
terminate process.

- Parent sees no other child wake
events during the rest of its
wait of 2, and so sleeps for the
remaining 1.5.

t = 3.0:
- Parent wakes, sees it has no
children, suffers from empty
nest syndrome.

When a forked function reaches the end of its execution,
the child clock associated with it is terminated. In the ex-
ample in Sec. 3.1, the master clock, acting as the parent
to both child clocks, calls wait_for_children_to
_finish, which causes it to wait indefinitely, rousing its
child clocks at the appropriate times until all children have
finished execution.

Note that child clocks can fork their own child clocks,
and so on. In this case, a clock may find itself in the role
of both parent and child, waking its children at the ap-
pointed times, and registering a wake up call with its par-
ent whenever it wishes to wait itself. Only a master clock,
a clock with no parent, actually calls time.sleep (or
rather, the more precise version explained in Sec. 1.2). All
other clocks simply register a wake up call with their par-
ent when they wish to sleep.

4. COMPENSATING FOR CALCULATION TIME

One of the initial problems that clockblocks was designed
to solve was the fact that, unless compensated for in some
way, any calculation time on a thread will cause that thread
to slow down relative to the sum of all of its calls to
time.sleep. It should be clear from the above that this
problem is already solved for all but the master clock, since
wake up times are absolute and will not drift. It only re-
mains to ensure that the master clock itself takes calcula-
tion time into account.

When a master clock wakes up, it immediately notes
down the current time. Then, after all relevant calculations
have taken place and a new wait call is made, it refers
back to the time that it originally woke up in determining
how long to sleep.

In some cases, when calculations are intensive and the
wait time is short, it may already be past the the desired
wake up time, and the clock finds itself running behind. At
this point there are two main options:

1 2 3 4 5 6 7 80

1 2 3 40

time:

beat:

1 2 3 40time:

beat: 1 2 3 4 5 6 7 80 9 10 11 12

1 2 30

time:

beat:

1 2 3 4 5 6 7 80 9 10 11 12

MASTER
rate = 1/2

tempo = 30

beat length = 2

CHILD
rate = 3

tempo = 180

beat length = 1/3

GRANDCHILD
rate = 1/4

tempo = 15

beat length = 4

absolute rate

= 1/2

absolute rate

= 1/2 * 3

= 3/2

absolute rate

= 1/2 * 3 * 1/4

= 3/8

Figure 2. Relationship between the rates of three “generations” of clocks running at different tempi

1. Allow the clock to stay behind and handle subse-
quent wait times as faithfully as possible.

2. Try to catch up in future calls to wait by not wait-
ing at all until the clock has caught up.

Both options are available in clockblocks. The first is
termed a “relative” timing policy (since it emphasizes
keeping individual wait times as accurate as possible),
while the latter is termed an “absolute” timing policy (since
it emphasizes not drifting from the absolute time at which
events should have occurred). If the playback from clock-
blocks is being coordinated in any way with that of an ex-
ternal application, an absolute timing policy would likely
be preferred; if not, a relative policy may be preferred.

The default used by clockblocks is actually a third, hy-
brid approach. This policy allows for time to be shaved off
of subsequent calls to wait, but only to a certain degree.
Thus, rather than catching up all at once, the clock catches
up in small increments. In many cases this is sufficient to
remain faithful to the absolute times at which events should
occur without distorting subsequent wait times noticeably.

5. NESTED CLOCKS

5.1 Tempo Inheritance

The true power of clockblocks as a library lies in the fact
that each clock, regardless of its place in the family hier-
archy, is allowed to have and manipulate its own tempo.
However, the actual speed at which a clock runs depends
not only on its own tempo, but also on the tempo of its par-
ent, and its parent’s parent, etc. all the way on up to the
master clock.

To understand this better, consider that a clock has two
different views on the passage of time: what beat it is on
and how much actual time has passed. As we have seen
above, these two properties are related by the clock’s beat
length; time passed is the integral of beat length with re-
spect to beats passed.

In clockblocks, each clock inherits its sense of time from
its parent; a beat in the parent clock constitutes a “second”
of time in the child clock. The word “second” here is in
quotes, because unless the clock in question is the master

clock, it is not a true second, but rather a second as filtered
through temporal distortions of its parents.

For instance, in Figure 2, we consider three generations
of nested clocks: a master clock running at rate 1/2, its
child (e.g. the result of a call to fork) running at rate
3, and its child’s child, running at rate 1/4. Note that the
child’s sense of time is inherited from the master clock’s
beat rate, and the grandchild’s sense of time is inherited
from the child’s beat rate. Thus is should be clear from
this picture that the tempi of clocks in a parent / child re-
lationship multiply. The absolute rate of the grandchild
clock – its rate with respect to wall time – is the product of
its own rate, its parent’s rate, and its parent’s parent’s rate.

What is not depicted in the above example is that each
clock can in fact be smoothly changing rate according to
manipulations of its tempo envelope. The actual amount of
wall time corresponding to a wait of, say, two beats in the
grandchild clock is calculated by first integrating for two
beats under the grandchild clock’s tempo envelope, then
taking the result and integrating for that many beats under
the child clock’s tempo envelope, and then taking that re-
sult and integrating for that many beats under the master
clock’s tempo envelope.

5.2 A Nested Tempo Example

The following example will server to illustrate how nested
clocks can follow different, but interacting, tempo en-
velopes. It also introduces several new features for shaping
a clock’s tempo over time:

from clockblocks import Clock
import math

def child_process_1(clock: Clock):
clock.apply_tempo_function(

lambda t: 60 + 30 * math.sin(t),
duration_units="time"

)
do something musical here
clock.wait(40, units="time")

Master Tempo Envelope

Child 1 Tempo Envelope

Child 2 Tempo Envelope

Child 1 Absolute Tempo Envelope

Child 2 Absolute Tempo Envelope

Figure 3. Effect of a master tempo envelope of the absolute tempo envelopes of its children. Note that, unlike in Figure 1, these graphs are of tempo,
rather than the beat length.

def child_process_2(clock: Clock):
clock.apply_tempo_envelope(

[70, 90, 90, 55, 85, 70],
[2, 1.5, 2.5, 1.5, 1.0],
curve_shapes=[0, 3, 0, -2, 0],
loop=True

)
do something musical here
clock.wait(40, units="time")

master = Clock()
child_1 = master.fork(child_process_1)
child_2 = master.fork(child_process_2)

master.set_rate_target(3, 15)
master.set_rate_target(1, 40,

truncate=False)
master.wait_for_children_to_finish()

Here, we create a master clock and spawn two child pro-
cesses. One of these processes follows a sinusoidal tempo
envelope, which we create by calling clock.apply_
tempo_function. (Internally, this tempo function is
being approximated by exponential curve segments, since
all tempo envelopes are piece-wise exponential.) The other
clock instead calls apply_tempo_envelope to define
this piece-wise exponential curve directly. Since the loop
flag has been set to True, the tempo envelope repeats for
as long as the clock is alive.

The master clock itself changes tempo over the course of
the example, going to a rate of 3 over the course of 15 beats
and back to a rate of 1 after 40 beats have passed. Note that
the truncate flag has been set to False in the second call
to set_rate_target; by default when a rate / tempo
/ beat length target is set, any existing targets are cut off,
but by setting the truncate flag to False, the first target
remains in place.

If, after the code above, we call the following, we gener-
ate the plots shown in Figure 3:

master.tempo_envelope.show_plot()
child_1.tempo_envelope.show_plot()
child_2.tempo_envelope.show_plot()
child_1.extract_absolute_tempo_envelope().

show_plot()
child_2.extract_absolute_tempo_envelope().

show_plot()

As Figure 3 illustrates, the tempo envelope of the master
clock affects those of the two child clocks. The plots in
the middle column show the tempo envelopes of the child
clocks with respect to their parent (the master clock), and
show the sinusoidal variation and explicitly defined tempo
envelope described above. On the other hand, the plots in
the right column show their absolute tempo envelopes, i.e.
their tempos with respect to wall time, having been altered
by the acceleration and deceleration of the master clock.

Before we leave this example, it should be pointed out
that the child clocks call waitwith the additional keyword
argument units="time". What this does is instruct the
clock to wait however many beats will correspond to 40
units of time, (which is the same as 40 beats in the par-
ent clock). This affords the ability to coordinate with the
parent clock; for instance, in this case the master clock has
been instructed to accelerate and decelerate over the course
of 40 beats, which will be the exact same length as 40 units
of time in the two child processes.

Notice also that time units have been specified for the si-
nusoidal tempo function defined on the first child clock.
This is why, in the graph of its tempo envelope, the peaks
are wider than the troughs; this is a graph of tempo with re-
spect to beats, and it will take more beats to cover a given
amount of time at a faster tempo than at a slower tempo.
On the other hand, the tempo envelope applied to the sec-
ond child clock is in the units of beats (which is the de-
fault), so the graph appears undistorted.

6. COMPARISON WITH OTHER APPROACHES

In contrast to audio programming environments like Gib-
ber [5] and ChucK [6], clockblocks does not concern itself
with the audio thread directly, or with sample accuracy. As
the time management engine of SCAMP, clockblocks is de-
signed for scheduling events at the rate of notes and sound
objects. The actual production of sound samples happens
externally, for instance via FluidSynth or OSC messages to
some other external instrument. Temporal precision is of
course desired, but sample accuracy is not necessary.

Clockblocks does bear some similarity to ChucK in its
syntax, however: the user performs operations, sets up pro-
cesses and then then advances time. As in ChucK, subpro-
cesses can be forked, and these subprocesses can them-
selves fork subprocesses. However, clockblocks makes use
of nested tempo relationships in a way that ChucK does
not, or at least not natively.

SuperCollider [7] provides the ability to control multiple
independent streams of tempo via the TempoClock object.
In some ways, clockblocks also resembles SuperCollider in
its server / client dichotomy; the client language that is in
charge of scheduling is separate from the process of gen-
erating audio samples. However, it is not possible in Su-
percollider to nest TempoClocks, and any accelerandi and
ritardandi must be accomplished through rapid incremen-
tal changes of tempo.

Thus, the main contribution of clockblocks is that it com-
bines the nested structure of an environment like ChucK
with the ability to smoothly manipulate tempo at any layer
of this structure. It also provides this functionality in
Python, a general purpose programming language that of-
fers access to a vast array of packages from a wide variety
of disciplines, and one that has at present a dirth of options
for managing musical time.

7. DIRECTIONS FOR FURTHER DEVELOPMENT

Although in its current implementation clockblocks does
not offer sample accuracy (nor is this necessary for its
role within SCAMP), the nested tempo approach presented
here has the potential for broader application, including
some contexts (like the scheduling of microsonic events)
where sample-accuracy would be desired. Therefore, one
natural direction for further work would be to translate this
system to a language like C++, using it generating a cue
of sample-clock timestamped events. Even within its cur-
rent Python implementation, one planned development is
to allow time-sensitive playback events, such as OSC mes-
sages or calls to an external synthesizer, to be scheduled
on a queue for later dispatching by an audio callback (for
instance, via a PyAudio’s PortAudio bindings).

Another area of clockblocks currently being developed
is the ability to specify and synchronize rhythmic phase.
Here we take inspiration from “Tempocurver” [8], de-
veloped by Matthew Wright in collaboration with com-
poser Edmund Campion, as well as from CNMAT’s subse-
quently developed Max / MSP external, “Timewarp” [9].

As we have seen, clockblocks makes it possible to coor-
dinate clocks so that they reach specific tempi at specifi-
cally appointed times. However, it may also be musically
important to coordinate rhythmic phase; for instance, we
may want two clocks that are following different tempo

curves to land on the beat at the exact same moment in
time. This requires fine tuning of the relationship between
beats passed and time passed,

Time Passed

maximum time passed = 2 beats * 2 s / beat = 4 s

minimum time passed = 2 beats * 0.75 s / beat = 1.5 s

Figure 4. Illustration of the relationship between curvature and the length
(in time) of an accelerando.

As Figure 4 illustrates, the relationship between the num-
ber of beats passed and the amount of time passed during
a segment of a TempoEnvelope is mediated not only by
the start and end tempo, but also by the curve shape. In
the illustrated accelerando, by varying the curvature, we
can adjust the amount of time passed to anywhere between
1.5 and 4 seconds. Thus, if we wished for this 2 beat ac-
celerando to last precisely 3 seconds, we would need only
to find the appropriate curve shape.

By using adjustments of this nature, it should be possible
to specify the desired metric phase (in terms of time, or
beats in the parent clock) at the end of an accelerando or
ritardando.

8. CONCLUSIONS

Reviewing the initial goals of clockblocks, it is hopefully
now clear to the reader that the system described:

1. Is capable of waiting significantly more precisely
than the standard call to time.sleep.

2. Takes efforts to compensate for calculation time, and
has an intelligent system for adjusting when calcula-
tion time lasts longer than an intended wait time.

3. Keeps track of multiple interconnected threads of
musical time and ensures that these threads remain
in lockstep with one another.

4. Allows for complex control and modulation of
tempo, and for nested tempo relationships.

These properties make clockblocks an excellent founda-
tion for a note-event-based playback and recording frame-
work in Python. Several different streams of time can eas-
ily coexist, and the resulting music can be recorded and
quantized in relation to any one of these streams. This
has particularly exciting implications for the playback and
score generation of polytemporal music.

9. REFERENCES

[1] T. Bača, J. Oberholtzer, J. Treviño, and V. Adán,
“Abjad: An Open-Source Software System for
Formalized Score Control,” in Proceedings of the
First International Conference on Technologies for
Music Notation and Representation – TENOR’15,
2015. [Online]. Available: http://tenor-conference.org/
proceedings.html#2015

[2] A. Brown, Making Music with Java. Andrew R.
Brown, May 2009.

[3] M. Evanstein, “SCAMP: a Suite for Computer-
Assisted Music in Python,” https://github.com/
MarcTheSpark/scamp, 2018.

[4] SuperCollider 3 Documentation Contributors, “Env
— SuperCollider 3.10.0 Help,” http://doc.sccode.org/
Classes/Env.html, 2018.

[5] C. Roberts, M. Wright, J. Kuchera-Morin, and
T. Höllerer, “Gibber: Abstractions for Creative
Multimedia Programming,” in Proceedings of the
ACM International Conference on Multimedia - MM
’14. Orlando, Florida, USA: ACM Press, 2014, pp.
67–76. [Online]. Available: http://dl.acm.org/citation.
cfm?doid=2647868.2654949

[6] G. Wang, P. R. Cook, and S. Salazar, “ChucK:
A Strongly Timed Computer Music Language,”
Computer Music Journal, vol. 39, no. 4, pp. 10–
29, Dec. 2015. [Online]. Available: http://www.
mitpressjournals.org/doi/10.1162/COMJ a 00324

[7] J. McCartney, “Rethinking the Computer Music Lan-
guage: SuperCollider,” Computer Music Journal,
vol. 26, no. 4, pp. 61–68, Dec. 2002. [Online]. Avail-
able: https://doi.org/10.1162/014892602320991383

[8] M. Wright and E. Campion, “Tempocurver,”
https://github.com/CNMAT/CNMAT-Externs/tree/
master/java/tempocurver, 2001.

[9] J. MacCallum and A. Schmeder, “Timewarp: A Graph-
ical Tool For The Control Of Polyphonic Smoothly
Varying Tempos,” in Proceedings of the 2010 Inter-
national Computer Music Conference, ICMC 2010,
New York, USA, 2010, 2010. [Online]. Available:
http://hdl.handle.net/2027/spo.bbp2372.2010.075

http://tenor-conference.org/proceedings.html#2015
http://tenor-conference.org/proceedings.html#2015
https://github.com/MarcTheSpark/scamp
https://github.com/MarcTheSpark/scamp
http://doc.sccode.org/Classes/Env.html
http://doc.sccode.org/Classes/Env.html
http://dl.acm.org/citation.cfm?doid=2647868.2654949
http://dl.acm.org/citation.cfm?doid=2647868.2654949
http://www.mitpressjournals.org/doi/10.1162/COMJ_a_00324
http://www.mitpressjournals.org/doi/10.1162/COMJ_a_00324
https://doi.org/10.1162/014892602320991383
https://github.com/CNMAT/CNMAT-Externs/tree/master/java/tempocurver
https://github.com/CNMAT/CNMAT-Externs/tree/master/java/tempocurver
http://hdl.handle.net/2027/spo.bbp2372.2010.075

	 1. Introduction
	1.1 Context
	1.2 Goals

	 2. A Simple Example
	2.1 The Code
	2.2 Implementation

	 3. Parallelism
	3.1 Parallel Clocks Example
	3.2 Parallel Clocks Implementation

	 4. Compensating for Calculation Time
	 5. Nested Clocks
	5.1 Tempo Inheritance
	5.2 A Nested Tempo Example

	 6. Comparison with other approaches
	 7. Directions for Further Development
	 8. Conclusions
	 9. References

